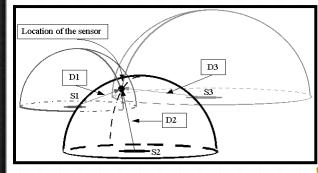

New Technology for Complete & Permanent PV Isolation

Keimyung University Dongsan Medical Center Hyoung-Seob Park

New Technology for PV Isolation

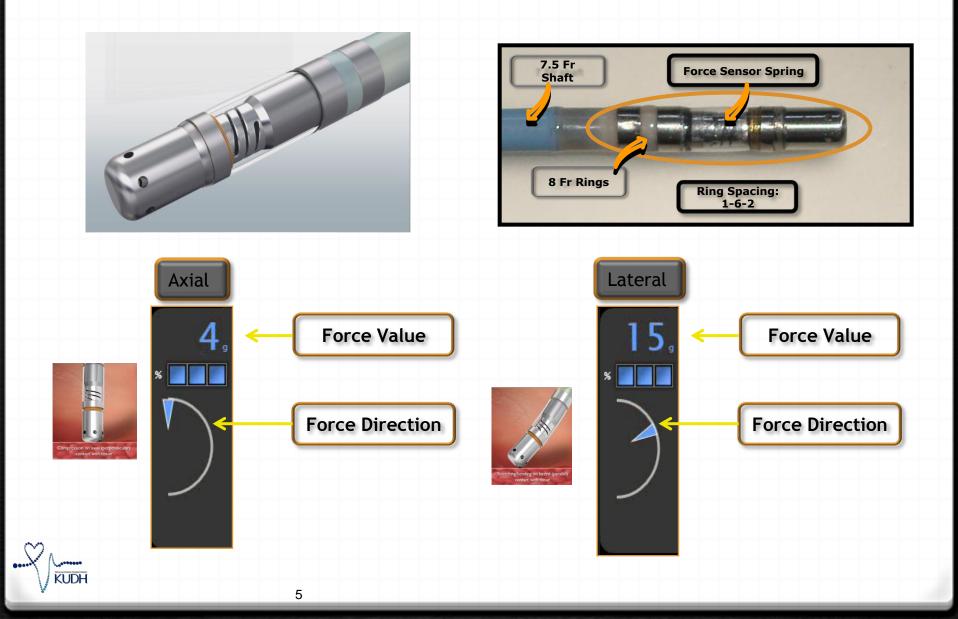
Contact-Force Sensing Catheters

TactiCath[™] Quartz Catheter (Endosense/St. Jude Medical)


KUDH

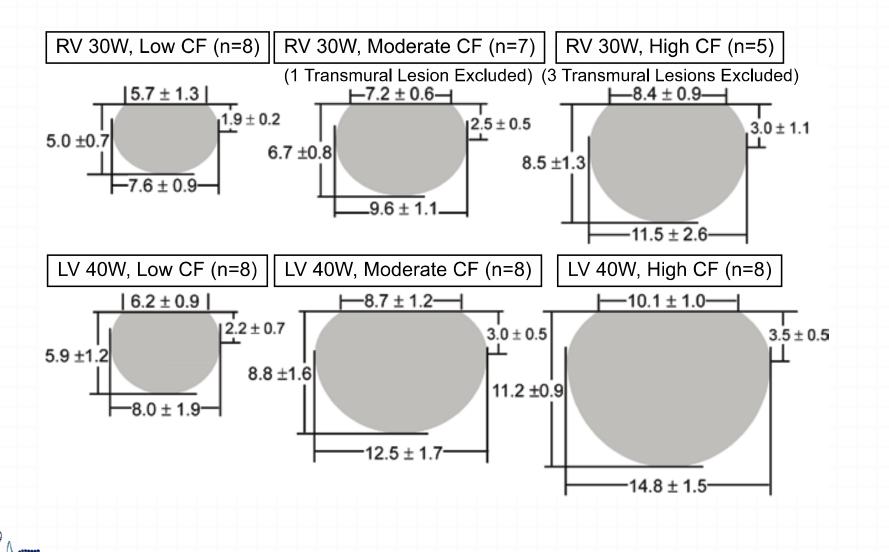
THERMOCOOL[®] SMARTTOUCH[™] Catheter (Biosense Webster)

THERMOCOOL[®] SMARTTOUCH[™] Catheter

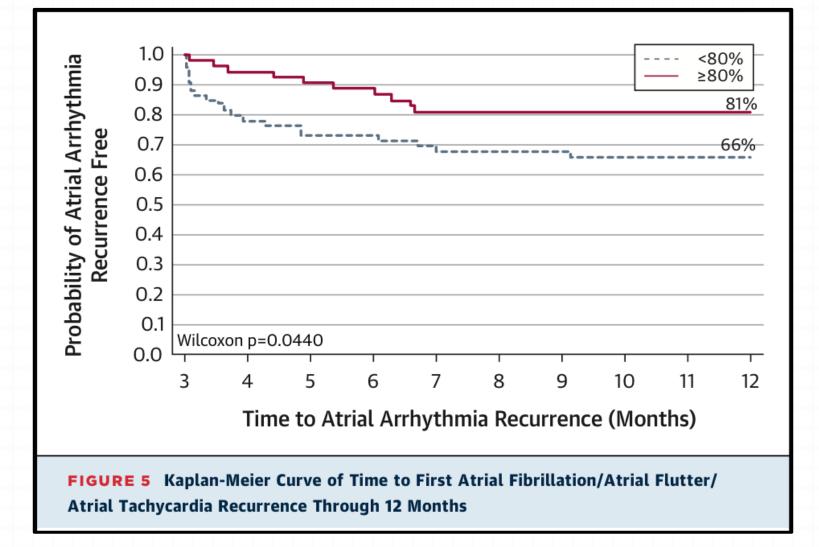

TRANSMITTER coil in the tip sends location reference signal about the Spring.

PRECISION SPRING allows small amount of electrode deflection.

SENSORS monitors the transmitter coils location signal and records the micromovements of the spring.


THERMOCOOL[®] SMARTTOUCH[™] Catheter

AF Ablation with CF and VISITAG[™] Module


Contact Force and Lesion Size

KUDH

Ikeda A et al. Circ Arrhythm Electrophysiol. 2014;7(6):1174-80.

Multicenter SMART-AF Trial

KUDH

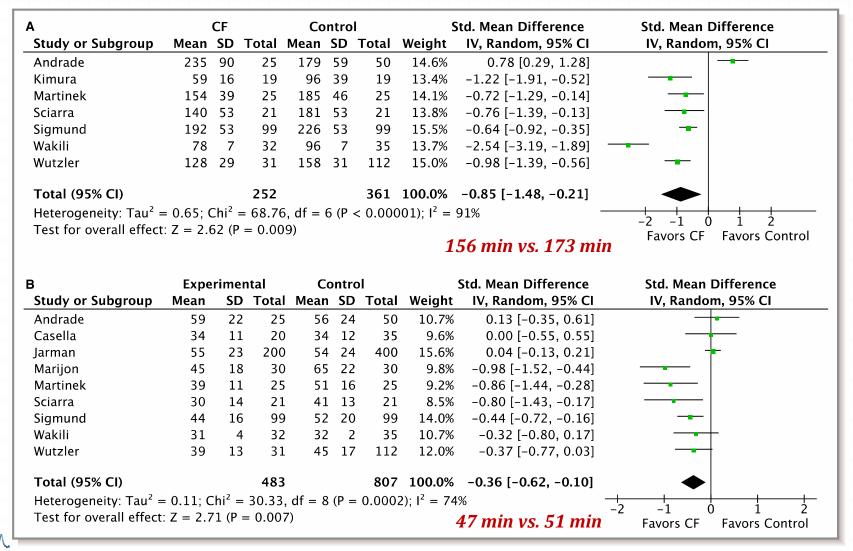
Natale A et al. J Am Coll Cardiol. 2014;64(7):647-56.

Reduction in AF recurrence : Meta-Analysis

	CF Catheters Non-CF Catheters			Risk Ratio	Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Andrade et al 2014	3	25	17	50	9.4%	0.35 [0.11, 1.09]	
Kimura et al 2014	1	19	3	19	2.7%	0.33 [0.04, 2.93]	
Mansour et al 2014 (Abstract)	20	83	60	143	40.8%	0.57 [0.37, 0.88]	
Marijon et al 2014	3	30	9	30	8.4%	0.33 [0.10, 1.11]	
Sciarra et al 2014	5	21	7	21	12.2%	0.71 [0.27, 1.89]	
Wakili et al 2014	13	32	13	35	26.4%	1.09 [0.60, 1.99]	
Total (95% CI)		210		298	100.0%	0.63 [0.44, 0.91]	•
Total events	45		109				
Heterogeneity: Tau ² = 0.04; Chi	² = 6.06, df	= 5 (P =	= 0.30); l ² = 18 ⁴	%		F	
Test for overall effect: Z = 2.49 (U.	.01 0.1 1 10 100 Favours [CF Catheters] Favours [Non-CF Catheters]

Afzal MR et al. Heart Rhythm. 2015;12:1990-6.

Reduction in AF recurrence : Meta-Analysis


	CF		Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI
Andrade	3	25	17	50	5.3%	0.26 [0.07, 1.01]	
Casella	3	20	7	35	4.5%	0.71 [0.16, 3.10]	
Jarman	100	200	223	400	31.5%	0.79 [0.56, 1.12]	
Kimura	1	19	3	19	1.9%	0.30 [0.03, 3.14]	
Marijon	3	30	11	30	4.9%	0.19 [0.05, 0.78]	
Sciarra	5	21	7	21	5.3%	0.63 [0.16, 2.42]	
Sigmund	20	99	34	99	16.9%	0.48 [0.25, 0.92]	
Ullah	32	50	31	50	12.2%	1.09 [0.48, 2.45]	_ - _
Wakili	13	32	13	35	9.1%	1.16 [0.43, 3.10]	
Wutzler	5	31	41	112	8.4%	0.33 [0.12, 0.93]	
Total (95% CI)		527		851	100.0%	0.62 [0.45, 0.86]	•
Total events	185		387				
Heterogeneity: Tau ² =	= 0.06; Cł	$11^2 = 12$	L.66, df =	= 9 (P =	= 0.23); I ²	= 23%	
Test for overall effect	:: Z = 2.85	5 (P = C)	0.004)			35.1% vs. 45.5% ^{0.0}	1 0.1 1 10 100 Favors CF Favors Control

CF Range : 2-60 *g* (*mean* 17 ± 5 *g*)

Shurrab M et al. J Am Heart Assoc. 2015

Procedure time & Ablation Time: Meta Analysis

Shurrab M et al. J Am Heart Assoc. 2015

KUDH

Fluoroscopic Time: Meta-Analysis

	CF		Co	ntro	ntrol Std. Mean Difference			Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Andrade	72	19	25	37	19	50	12.6%	1.82 [1.26, 2.39]	-
Jarman	27	15	200	35	19	400	13.5%	-0.45 [-0.62, -0.28]	-
Marijon	20	4	30	27	5	30	12.5%	-1.53 [-2.11, -0.95]	-
Martinek	24	13	25	29	17	25	12.6%	-0.33 [-0.88, 0.23]	
Sciarra	20	10	21	34	18	21	12.3%	-0.94 [-1.58, -0.30]	
Sigmund	20	9	99	29	11	99	13.3%	-0.89 [-1.18, -0.60]	+
Wakili	33	3	32	51	3	35	10.2%	-5.93 [-7.07, -4.79]	_
Wutzler	40	11	31	44	15	112	13.1%	-0.28 [-0.68, 0.12]	-
Total (95% CI)			463			772	100.0%	-0.94 [-1.66, -0.21]	•
Heterogeneity: $Tau^2 = 1.01$; $Chi^2 = 174.22$, $df = 7$ (P <					= 7 (F	P < 0.00	0001); I ² =	= 96%	
Test for overall effect:	-			-				28 min vs. 36 min	-4 -2 0 2 4 Favors CF Favors Control

Shurrab M et al. J Am Heart Assoc. 2015

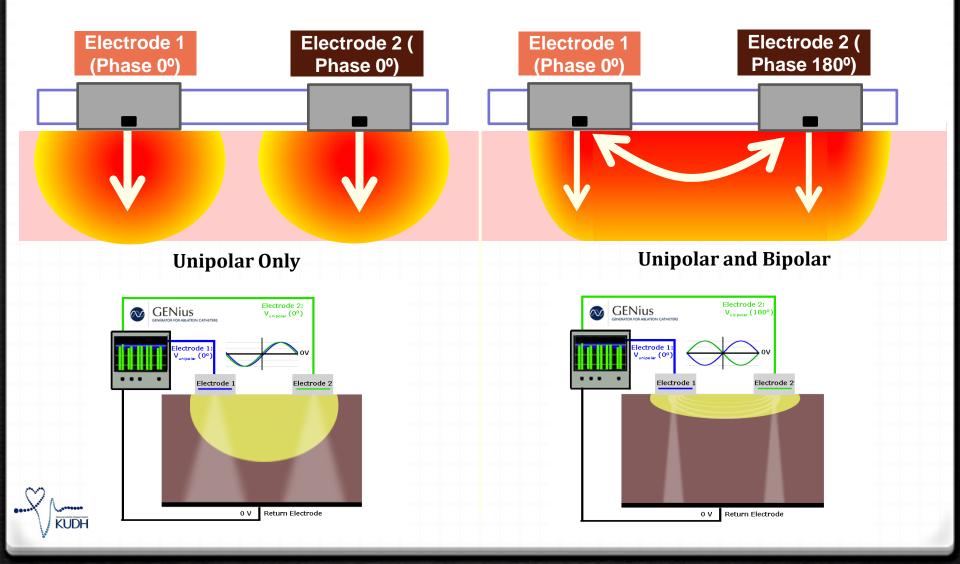
Complication Rate: Meta-Analysis

A Major Complications CF		Conti	rol		Odds Ratio	Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl	
Jarman	3	200	10	400	47.0%	0.59 [0.16, 2.18]		
Martinek	1	25	0	25	7.6%	3.12 [0.12, 80.39]		
Sigmund	2	99	3	99	24.3%	0.66 [0.11, 4.04]		
Ullah	1	50	2	50	13.5%	0.49 [0.04, 5.58]		
Wutzler	0	31	1	112	7.7%	1.18 [0.05, 29.68]		
Total (95% CI)		405		686	100.0%	0.71 [0.29, 1.73]		
Total events	7		16					
Heterogeneity: Tau ² = Test for overall effect:								
rest for overall effect.	2 = 0.7	5 (I – C	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1.3%	vs. 1.9%	Favors CF Favors Control	

В	Cardiac Tamponade	CF		Contr	ol		Odds Ratio		Odds R	atio	
_	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Randor	n, 95% Cl	
	Jarman	2	200	5	400	38.3%	0.80 [0.15, 4.15]				
	Martinek	1	25	0	25	9.9%	3.12 [0.12, 80.39]				-
	Sigmund	2	99	3	99	31.8%	0.66 [0.11, 4.04]				
	Ullah	0	50	1	50	10.0%	0.33 [0.01, 8.21]				
	Wutzler	0	31	1	112	10.0%	1.18 [0.05, 29.68]				
	Total (95% CI)		405		686	100.0%	0.82 [0.29, 2.27]		-	•	
	Total events	5		10							
	Heterogeneity: Tau ² =	• 0.00; Cł	$ni^2 = 1.$	07, df =	4 (P =	0.90); I ² =	= 0%	0.01	-+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	10 1	.00
	Test for overall effect:	Z = 0.39	$\Theta (P = C)$).70)	1	.2% vs	. 1.4%	0.01	0.1 1	Favors Contr	

KUDH

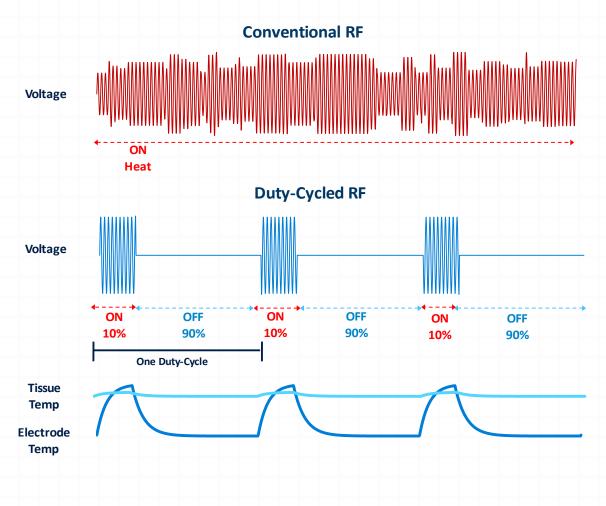
Shurrab M et al. J Am Heart Assoc. 2015



Phased RF Ablation

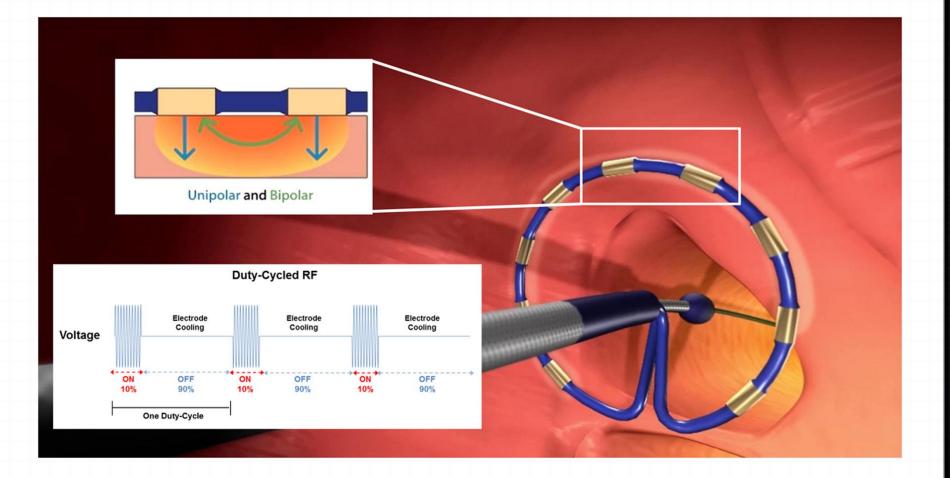
Energy Deployment - Phasing

Unipolar for Depth & Bipolar for Continuity



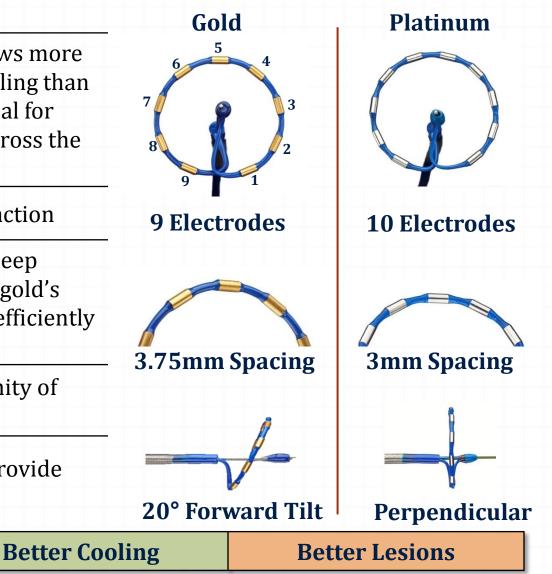
Duty-Cycling Electrode Colling and Temperatur Measurement

In conventional RF, power is continuously delivered and saline cooling is required to deliver enough power


In Phased RF, 100W is delivered up to 10% of the time, permitting sufficient energy delivery while allowing electrodes to cool in the off period.

During the 'off' period, electrodes cool while tissue temperature remains close to target allowing lesion to progress

Phased RF Ablation



PVAC GOLD Summary

- Gold thermal conductivity allows more uniform heating and faster cooling than platinum providing the potential for precise temperature control across the electrode
- Eliminate 1:10 electrode interaction
- Should generate equivalently deep lesions to platinum because of gold's ability to deliver energy more efficiently and consistently
- Potential for improved uniformity of tissue contact
- Over-the-wire design should provide stability in various anatomies

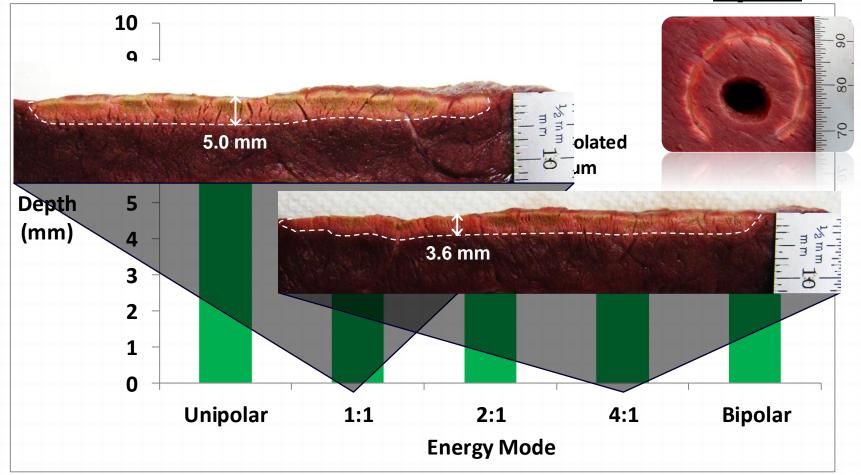
Better Contact

KUDH

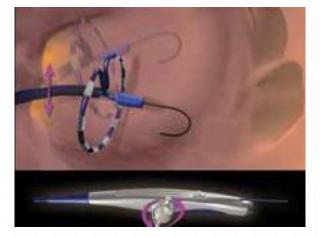
Phased RF Ablation Technology

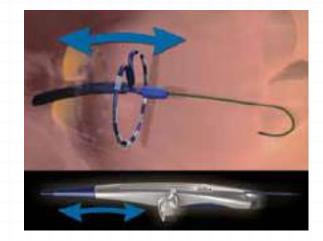
PVAC GOLD, MASC, and MAAC Catheters

 Single transseptal access with 3 catheter system that allows mapping, ablation, and pacing through all or selected bipolar pairs


- GENius with ContactIQ Multichannel RF Generator
 - ContactIQ provides a display of effective contact and ablation progress
 - 16 independent temperature-controlled channels deliver unipolar and bipolar energy simultaneously

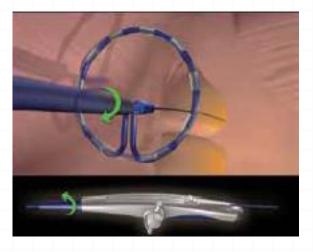
Phased RF Ablation : Lesion Depth Control

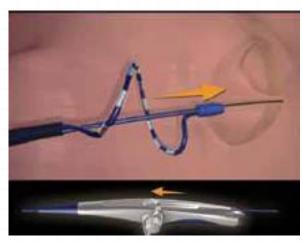

Top View


Wijffels MC et al. J Cardiovasc Electrophysiol. 2009;20:1142-8.

PVAC Maneuvers to Improve Tissue Contact

Steering



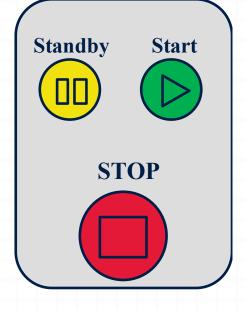

Pulling or Pushing

Rotating

Sliding

Standby, Start, and Stop Buttons

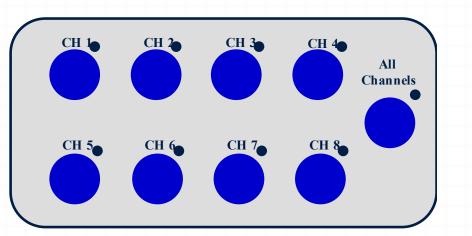
Standby button


- Pressing Standby after catheter positioning and prior to initiating ablation will display electrode temperature information for selected channels
- Resets Cumulative RF usage display (Press and hold the Standby button for 3 seconds)

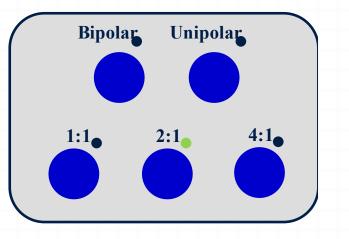
Start button

- Begins energy delivery
- During ablation an audible tone is emitted and beeps to signal end of ablation

STOP button


- Can be pressed anytime during ablation to stop energy delivery
- End of ablation audible tone sounds and generator enters Setup mode

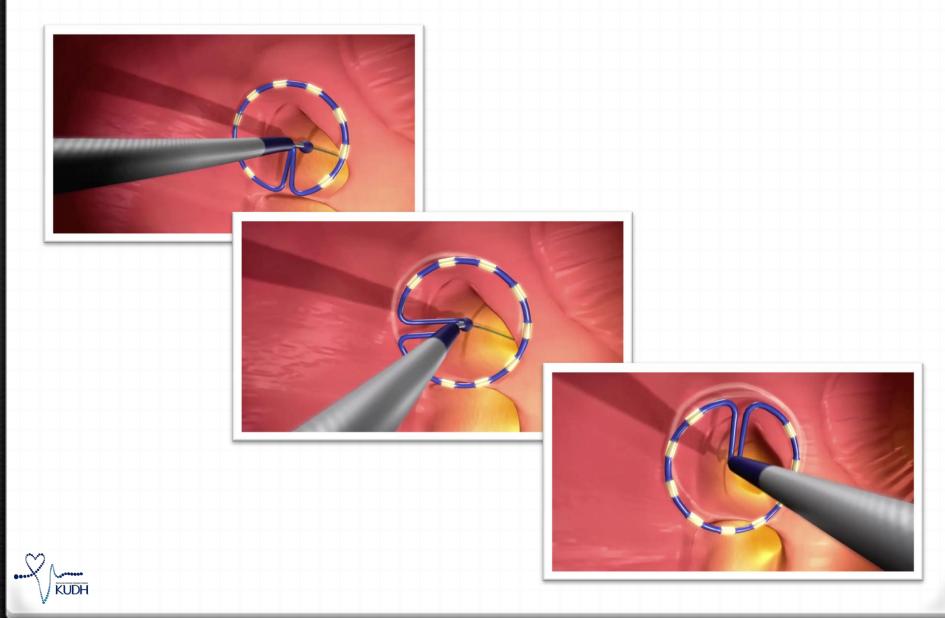
Channel Management


- Channel buttons are available in Setup mode when a catheter is connected
- Used to select or de-select ablation channels
 - A green light appears when a channel is selected
- All Channels selects or deselects all channels with a single press
- Channels can also be deselected during ablation

- PVAC: CH1 CH5
- MASC: CH1 CH6
- MAAC: CH1 CH4

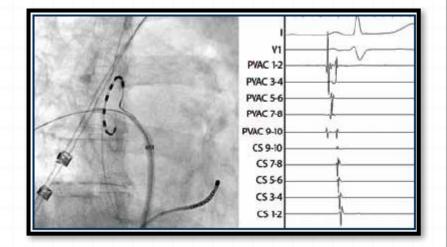
Energy Mode Buttons

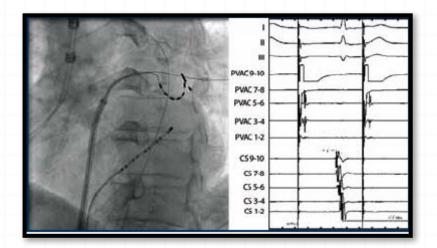
- Energy modes: Bipolar, Unipolar, 1:1, 2:1 and 4:1
- The first number refers to bipolar component and second number refers to unipolar component
- Indicator is illuminated for selected energy mode (2:1 in the example)
- The default mode for PVAC is 4:1
- The default mode for MAAC and MASC is 1:1



PVAC Energy Deployment

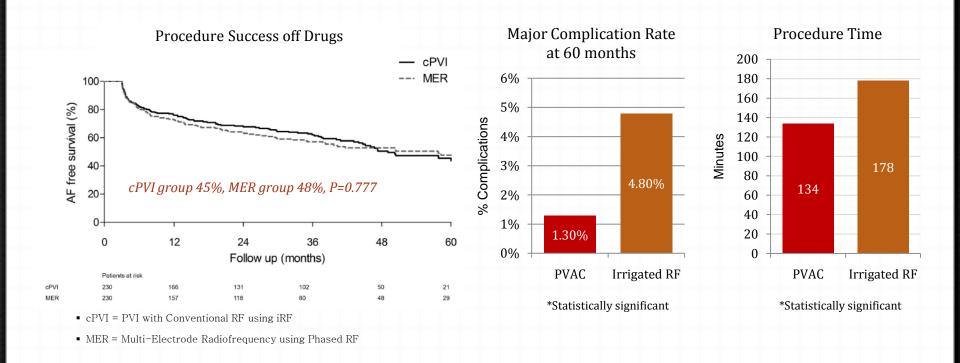
PVAC Ablation


Validation of Pulmonary Vein Isolation


Entrance Block

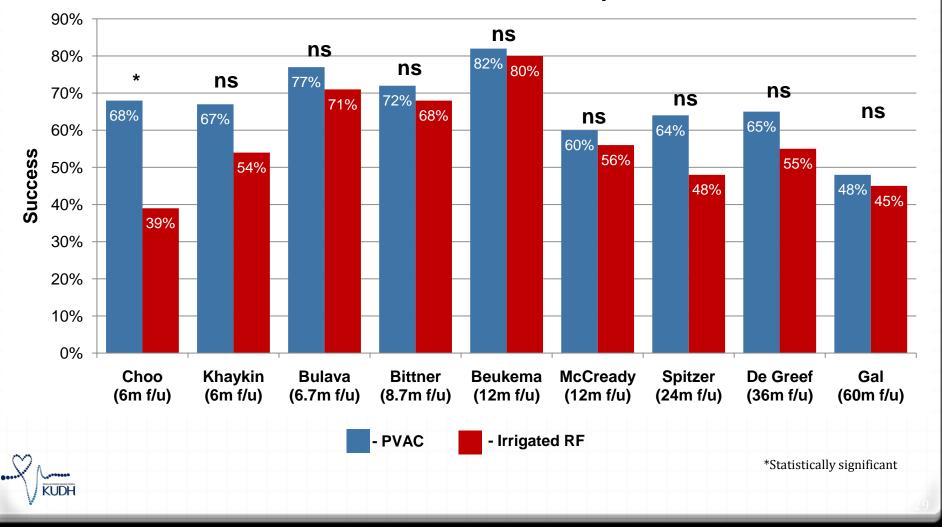
- Place PVAC distal to the presumed ablation line
- Check for entrance block by mapping during sinus rhythm
 - Distal CS pacing for Left PV's
 - Proximal CS or High Right Atrial pacing for Right PV's

Exit Block


- Place PVAC array within the targeted vein
- Pace at high output from each of the PVAC pairs checking for effect on PV and atrial activations

5 Year FU with PVAC vs. Irrigated RF

- PVAC


- Irrigated RF

Gal P et al. Int J Cardiol. 2014;176:891-5.

Effectiveness : PVAC vs. Irrigated RF

Effectiveness at follow-up

Procedure Time : PVAC vs. Irrigated RF

KUDH

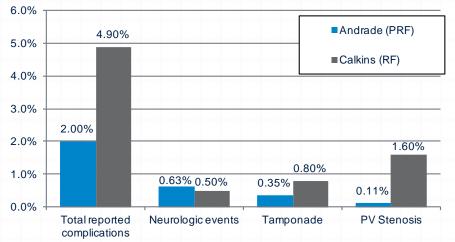
Average Procedure Time

*Statistically significant

Procedure Data : WACA vs. PVAC

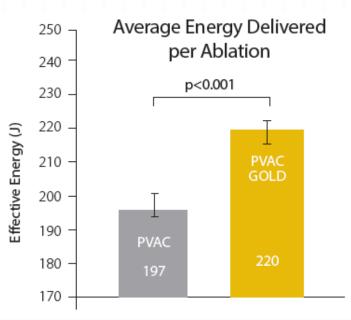
Table 2 Procedural data


	WACA mean (range)	PVAC mean (range)	P value
Mean procedure time (min)	167 <u>+</u> 42 (95–270)	140 ± 43 (70–270)	<0.0001
Left atrial dwell time (min)	133 ± 36 (90–210)	111 ± 35 (55–220)	< 0.0001
Fluoroscopy time (min)	42 ± 20 (9–86)	35 ± 16 (4–86)	< 0.05
RF application time (min)	40 ± 14 (8–49)	27 ± 8 (13–68)	< 0.0001
Mean number of RF applications per vein			
PVAC			
L. superior PV	_	8	-
L. inferior PV	_	9	-
Left common PV	_	15	-
R. superior PV	_	7	-
R. inferior PV	_	6	-
R. common PV	-	10	-


McCready J et al. Europace. 2014 Aug;16(8):1145-53

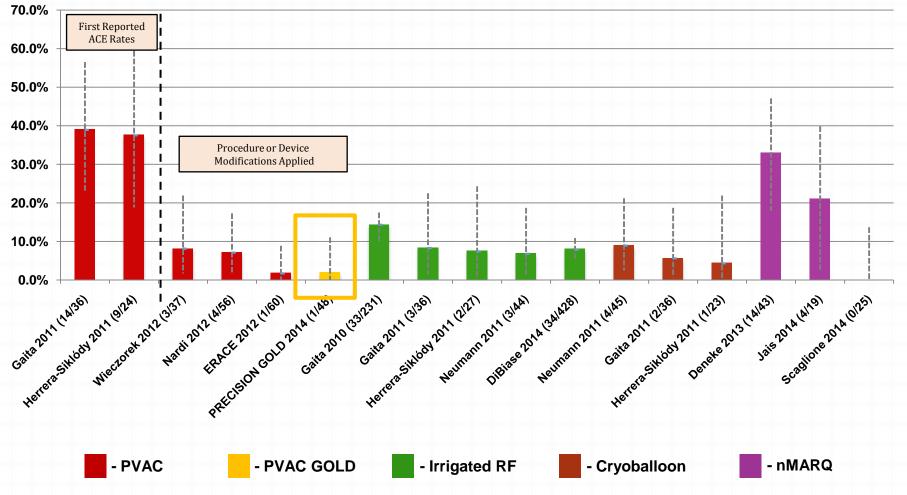
Safety : PVAC vs. Irrigated RF

Scharf Survey Results


Andrade Meta-Analysis Results

PVAC Gold vs. PVAC

	PVAC GOLD	ERACE	p Value
Procedure time	104 ± 31 min	100 ± 35 min	p=0.5375
LA dwell time	60 ± 18 min	64 ± 27 min	p=0.3007
Fluoroscopy time	16 ± 7 min	-	-
RF applications	20 ± 10	29 ± 16	p=0.0010

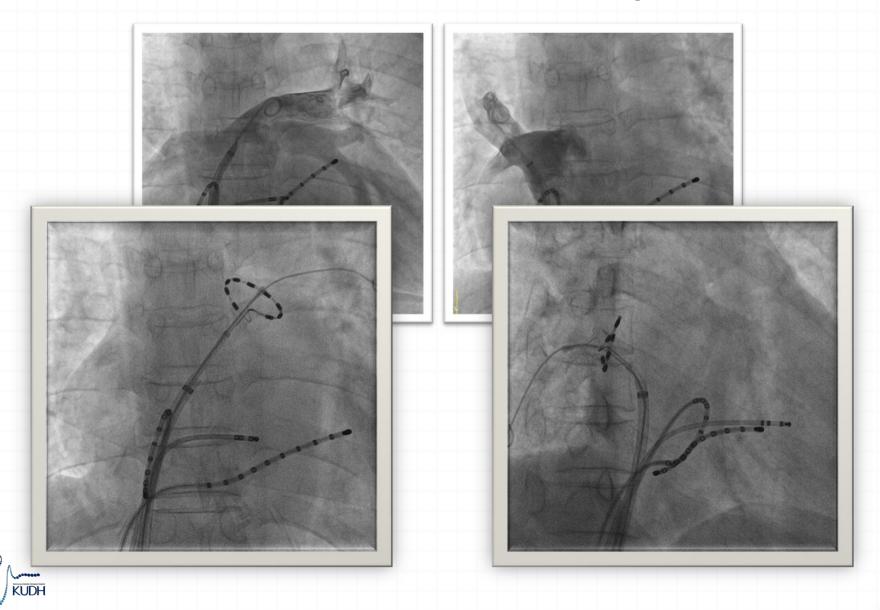


1. De Greef Y, et al. Phased RF Evaluation of Acute Pulmonary Vein Isolation in Paroxysmal AF With New GENius and PVAC GOLD: the PRECISION-GOLD Study. Circulation. 2014;130:Suppl 2 A18975.

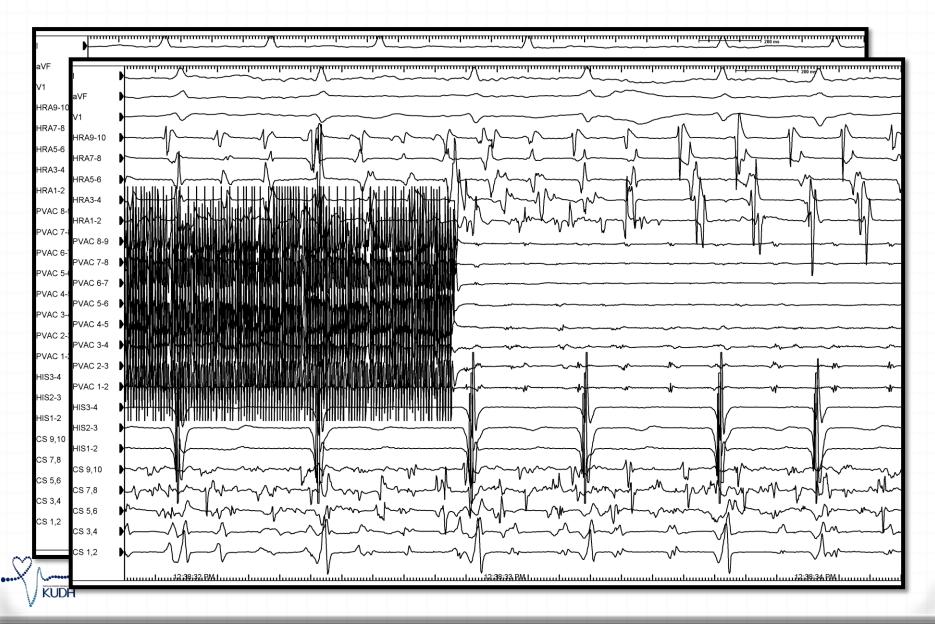
2. Verma A, Debruyne P, Nardi S, et al. Evaluation and reduction of asymptomatic cerebral embolism in ablation of AF, but high prevalence of chronic silent (**) infarction: Results of the ERACE trial. Circ Arrhythm Electrophysiol. 2013 Oct;6(5):835-842.

KUDH

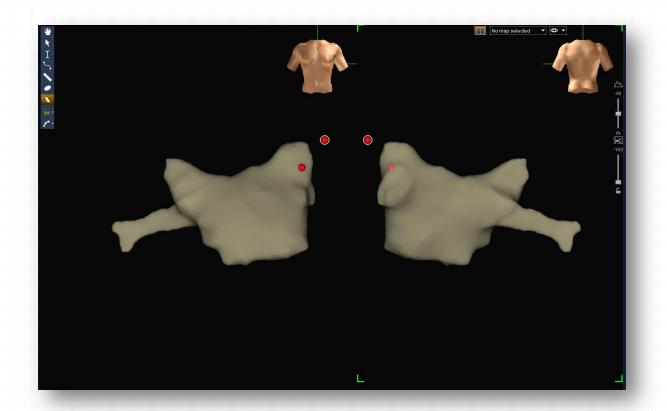
PVAC GOLD ACE Rate : 2.1% Amongst the Lowest of any Technology



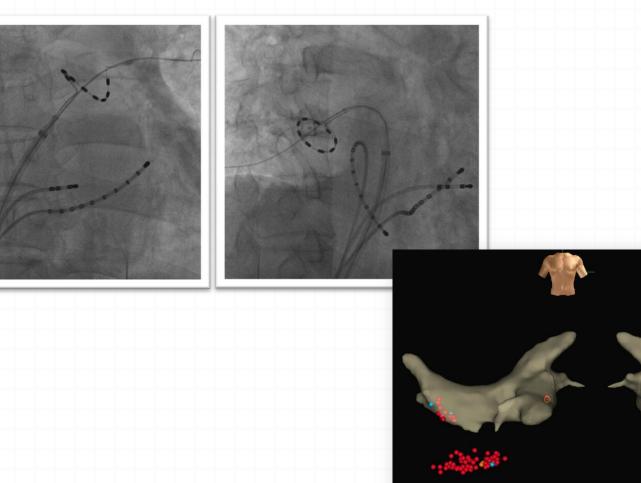
Caution: Clinical results across studies/protocols may not be comparable.


KUDH

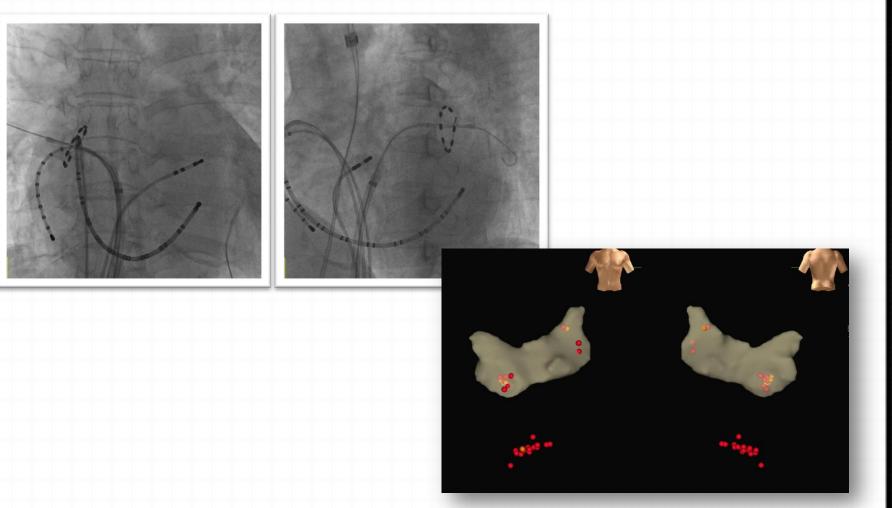
All studies included used 1.5T MRI scanner and used a consistent lesion definition as per Gaita/Herrera-Siklódy (DWI + ADC + FLAIR)

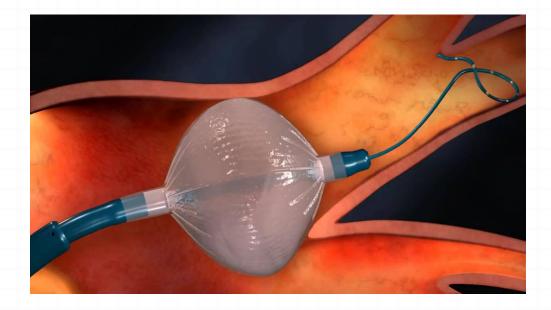

Case 1. 59 Y.O. Female, Paroxysmal AF

LSPV Ablation


Additional Ablation for PVI

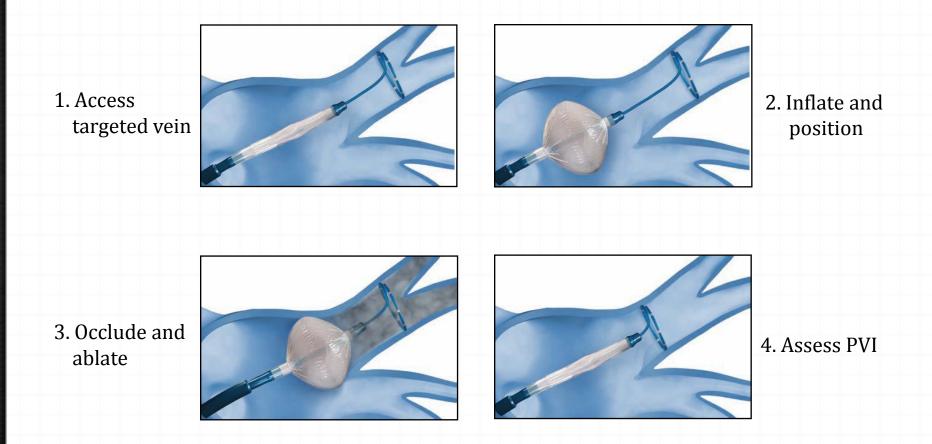
Total Procedure time: 125min Fluoroscopic Time : 20min 51sec


Case 2. 60 Y.O. Male, Paroxysmal AF



Total Procedure time: 155min Fluoroscopic Time : 40min 19sec

Case 3. 72 Y.O. Female, Persistent AF


Total Procedure time: 125min Fluoroscopic Time : 32min 53sec

Cryoballoon Ablation

Cryoballoon Ablation

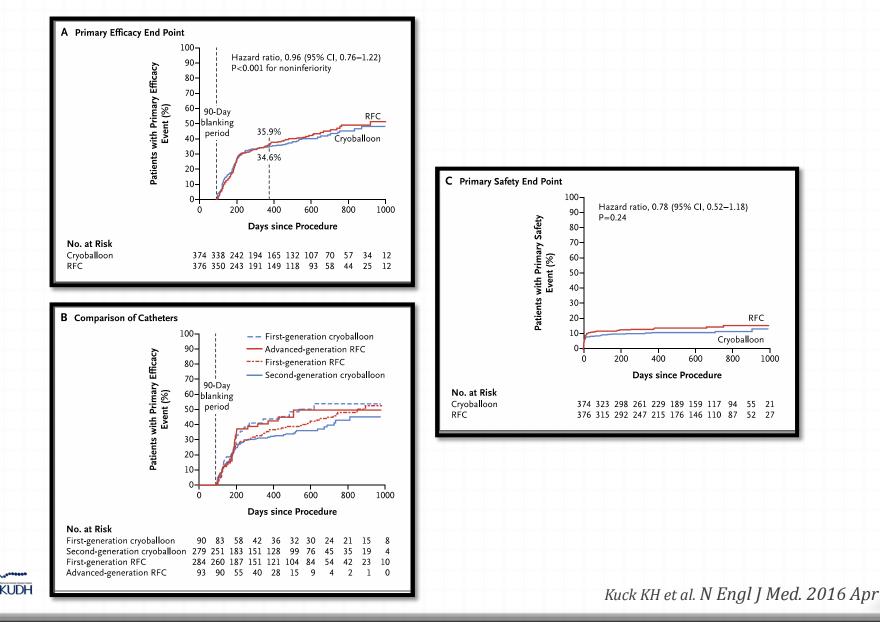
The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Cryoballoon or Radiofrequency Ablation for Paroxysmal Atrial Fibrillation

Karl-Heinz Kuck, M.D., Josep Brugada, M.D., Alexander Fürnkranz, M.D., Andreas Metzner, M.D., Feifan Ouyang, M.D., K.R. Julian Chun, M.D., Arif Elvan, M.D., Ph.D, Thomas Arentz, M.D., Kurt Bestehorn, M.D., Stuart J. Pocock, Ph.D., Jean-Paul Albenque, M.D., Ph.D., and Claudio Tondo, M.D., Ph.D., for the FIRE AND ICE Investigators*

ABSTRACT


BACKGROUND

Current guidelines recommend pulmonary-vein isolation by means of catheter ablation as treatment for drug-refractory paroxysmal atrial fibrillation. Radiofrequency ablation is the most common method, and cryoballoon ablation is the second most frequently used technology.

Kuck KH et al. N Engl J Med. 2016 Apr

End Point	Radiofrequency Group (N = 376)	Cryoballoon Group (N = 374)	Hazard Ratio (95% CI)†	P Value
Primary efficacy end point — no. of patients (%)‡	143 (35.9) §	138 (34.6) §	0.96 (0.76–1.22)	<0.001¶
Components of the primary efficacy end point — no. of pa- tients				
Recurrent atrial arrhythmia	87	80	—	
Antiarrhythmic drug treatment	49	51		<u> </u>
Repeat ablation	7	7	—	_
Secondary efficacy end points				
Death from any cause — no. of patients	0	2	—	0.25**
Death from arrhythmia — no. of patients	0	0		
Total procedure duration — min	140.9±54.9	124.4±39.0	—	<0.001†
Left atrial dwell time — min‡‡	108.6±44.9	92.3±31.4	—	<0.001†
Total fluoroscopy time — min∬∬	16.6±17.8	21.7±13.9	—	<0.001†
Rehospitalization for cardiovascular causes — no. of pa- tients (%)	55 (13.5)§	44 (9.4)§	0.78 (0.53–1.16)	0.28**

Kuck KH et al. N Engl J Med. 2016 Apr

Table 3. Safety End Points.			
End Point	Radiofrequency Group (N = 376)	Cryoballoon Group (N = 374)	P Value*
	no. of pati	ents (%)	
Primary safety end point†	51 (12.8)‡	40 (10.2)‡	
Death from any cause§	0	2 (0.5)¶	0.50
Stroke or TIA from any cause§	2 (0.5)	2 (0.5)	1.00
Atrial arrhythmia§∥	13 (3.5)	8 (2.1)	0.38
★ Atrial flutter or atrial tachycardia	10 (2.7)	3 (0.8)	0.09
Non-arrhythmia-related serious adverse events§	36 (9.6)	28 (7.5)	0.36
★ Groin-site complication**	16 (4.3)	7 (1.9)	0.09
★Unresolved phrenic nerve injury††			
At discharge	0	10 (2.7)	0.001
At 3 months	0	2 (0.5)	0.25
At >12 months	0	1 (0.3)	0.50
Cardiac tamponade or pericardial effusion	5 (1.3)	1 (0.3)	0.22
Pulmonary or bronchial complication	4 (1.1)	2 (0.5)	0.69
Transient neurologic complication	3 (0.8)	1 (0.3)	0.62
Dyspnea	2 (0.5)	1 (0.3)	1.00
Gastrointestinal complication	2 (0.5)	1 (0.3)	1.00
Other, nonarrhythmia cardiac complications‡‡	0	3 (0.8)	0.12
Anxiety	0	1 (0.3)	0.50
Contrast media reaction	1 (0.3)	0	1.00
Contusion	1 (0.3)	0	1.00
Esophageal ulcer	0	1 (0.3)	0.50
Hematuria	1 (0.3)	0	1.00
Local edema	1 (0.3)	0	1.00
Atrioesophageal fistula	0	0	
Pulmonary vein stenosis	0	0	_

Kuck KH et al. N Engl J Med. 2016 Apr

Summary

- AF ablation with optimal CF demonstrated improved clinical outcome.
- Multi-electrode phased RF ablation was superior in procedure duration and ablation time, with less complications.
- Pulmonary vein isolation by means of cryoballoon ablation was noninferior to pulmonary vein isolation by radiofrequency ablation in terms of efficacy and safety.

Thanks for your attention !!

